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Abstract— We present the first known implementation of el-
liptic curve cryptography over F2p for sensor networks based on
the 8-bit, 7.3828-MHz MICA2 mote. Through instrumentation of
UC Berkeley’s TinySec module, we argue that, although secret-key
cryptography has been tractable in this domain for some time,
there has remained a need for an efficient, secure mechanism
for distribution of secret keys among nodes. Although public-key
infrastructure has been thought impractical, we argue, through
analysis of our own implementation for TinyOS of multiplication
of points on elliptic curves, that public-key infrastructure is, in
fact, viable for TinySec keys’ distribution, even on the MICA2. We
demonstrate that public keys can be generated within 34 seconds,
and that shared secrets can be distributed among nodes in a sensor
network within the same, using just over 1 kilobyte of SRAM and
34 kilobytes of ROM.

I. INTRODUCTION

Wireless sensor networks have been proposed for such ap-
plications as habitat monitoring [1], structural health monitor-
ing [2], emergency medical care [3], and vehicular tracking [4],
all of which demand some combination of authentication,
integrity, privacy, and security. Unfortunately, the state of the
art has offered weak, if any, guarantees of these needs.

The limited resources boasted by today’s sensor networks
appear to render them ill-suited for the most straightforward
implementations of security protocols. Consider the MICA2
mote [5], designed by researchers at the University of Cal-
ifornia at Berkeley and fabricated by Crossbow Technology,
Inc. This device offers an 8-bit, 7.3828-MHz ATmega 128L
processor, 4 kilobytes (KB) of primary memory (SRAM), and
128 KB of program space (ROM). Such a device, given these
resources, is seemingly unfit for computationally expensive
or energy-intensive operations. For this reason has public-
key cryptography often been ruled out for sensor networks
as an infrastructure for authentication, integrity, privacy, and
security [6]–[9], even despite its allowance for secure rekeying
of mobile devices.

But such conclusions have been backed too infrequently
by actual data. In fact, to our knowledge, little empirical
research has been published on the viability of public-key
infrastructure (PKI) for the MICA2, save for a cursory analysis

of an implementation of RSA [10] and a recent comparison of
RSA and elliptic curve cryptography (ECC) over Fp [11].

Our work aspires to fill this void. Through instrumentation
of TinyOS, we first demonstrate that secret-key cryptography is
tractable on the MICA2. By way of our own implementation
of multiplication of points on elliptic curves, we then argue
that PKI for secret keys’ distribution is, in fact, tractable as
well. Public keys can be generated within 34 seconds (sec),
and shared secrets can be distributed within the same, using
just over 1 KB of SRAM and 34 KB of ROM.

We begin these arguments in Section II with an analysis
of TinySec [6], TinyOS’s existing secret-key infrastructure for
the MICA2 based on SKIPJACK [12]. In Section III, we
address shortcomings in that infrastructure with a look at an
implementation of Diffie-Hellman for the MICA2 based on
the Discrete Logarithm Problem (DLP) and expose weak-
nesses in its design for sensor networks. In Section IV, we
redress those weaknesses with our own implementation of
Diffie-Hellman based on the Elliptic Curve Discrete Logarithm
Problem (ECDLP). In Section V, we discuss optimizations
underlying our implementation. In Section VI, we propose
directions for future work, while, in Section VII, we explore
related work. We conclude in Section VIII.

II. SKIPJACK AND THE MICA2

TinyOS currently offers the MICA2 access control, authen-
tication, integrity, and confidentiality through TinySec, a link-
layer security mechanism based on SKIPJACK in cipher-block
chaining mode. An 80-bit symmetric cipher, SKIPJACK is the
formerly classified algorithm behind the Clipper chip, approved
by the National Institute for Standards and Technology (NIST)
in 1994 for the Escrowed Encryption Standard [13]. TinySec
supports message authentication and integrity with message au-
thentication codes, confidentiality with encryption, and access
control with shared, group keys.

The mechanism allows for an 80-bit key space, the benefit
of which is that known attacks require as many 279 opera-
tions on average (assuming SKIPJACK isn’t reduced from 32



rounds [14]).1 Moreover, as packets under TinySec include a
4-byte message authentication code (MAC), the probability of
blind forgery is only 2−32. This security comes at a cost of just
five bytes (B): whereas transmission of some 29-byte plaintext
and its cyclic redundancy check (CRC) requires a packet of
36 B, transmission of that plaintext’s ciphertext and MAC under
TinySec requires a packet of only 41 B, as the mechanism
borrows TinyOS’s fields for Group ID (TinyOS’s weak, default
mechanism for access control) and CRC for its MAC.

Performance. The impact of TinySec on the MICA2’s
performance is reasonable. On first glance, it would appear
that TinySec adds under 2 milliseconds (ms) to a packet’s
transmission time (Table I) and under 5 ms to a packet’s round-
trip time to and from some neighbor (Table II). However,
the apparent overhead of TinySec, 1,244 microseconds (µsec)
on average, as suggested by transmission times, is nearly
subsumed by the data’s root mean square (1,094 µsec). Round-
trip times exhibit less variance, but tighter benchmarks are in
order for TinySec’s accurate analysis.

Table III, then, offers results with yet less variance from finer
instrumentation of TinySec: encryption of a 29-byte, random
payload requires 2,190 µsec on average, and computation of
that payload’s MAC requires 3,049 µsec on average; overall,
TinySec adds 5,239 ± 18 µsec to a packet’s computational
requirements. It appears, then, that some of those cycles can
be subsumed by delays in scheduling and medium access, at
least for applications not already operating at full duty. Fig. 1,
the results of an analysis of the MICA2’s throughput, without
and with TinySec enabled, puts the mechanism’s computational
overhead for such applications into perspective: on average,
TinySec may lower throughput of acknowledged packets by
only 0.28 packets per second. These results appear in line with
UC Berkeley’s own evaluation of TinySec [15].

Memory. Of course, TinySec’s encryption and authentica-
tion does come at an additional cost in memory. Per Table IV,
TinySec adds 454 B to an application’s .bss segment, 276 B
to an application’s .data segment, 7,076 B to an application’s
.text segment, and 92 B to an application’s maximal stack
size during execution. For applications that don’t require the
entirety of the MICA2’s 128 KB of program memory and 4 KB
of primary memory, then, TinySec is a viable addition.

Security. As with any cipher based only on shared secrets,
TinySec is, of course, vulnerable to various attacks. After all,
the MICA2 is intended for deployment in sensor networks. For
reasons of cost and logistics, long-term, physical security of
the devices is unlikely. Compromise of the network, therefore,
reduces to compromise of any one node, unless, for instance,
rekeying is possible. Pairwise keys among n nodes would cer-

1Although TinySec allows for 80-bit keys, its current implementation actu-
ally relies on 64-bit keys that are extended with 16 bits of padding.

TABLE I

TRANSMISSION TIMES REQUIRED TO TRANSMIT A 29-BYTE, RANDOM

PAYLOAD, AVERAGED OVER 1,000 TRIALS, WITH AND WITHOUT TINYSEC

ENABLED. TRANSMISSION TIME IS DEFINED HERE AS THE TIME ELAPSED

BETWEEN SENDMSG.SEND(·,·,·) AND SENDMSG.SENDDONE(). THE

IMPLIED OVERHEAD OF TINYSEC ON TRANSMISSION TIME IS GIVEN AS

THE DIFFERENCE OF THE DATA’S MEANS. THE ROOT MEAN SQUARE IS

DEFINED AS
q

s2
W/O/1, 000 + s2

W//1, 000, WHERE sW/O AND sW/ ARE THE

DATA’S STANDARD DEVIATIONS.

without TinySec with TinySec
Median 72,904 µsec 74,367 µsec
Mean 74,844 µsec 76,088 µsec
Standard Deviation 24,248 µsec 24,645 µsec
Standard Error 767 µsec 779 µsec

Implied Overhead of TinySec 1,244 µsec
Root Mean Square 1,094 µsec

tainly provide some defense against compromises of individual
nodes. But n2 80-bit keys would more than exhaust a node’s
SRAM for n as small as 20. A more sparing use of secret
keys is in order, but secure, dynamic establishment of those
keys, particularly for networks in which the positions of sensors
may be transient, requires a chain or infrastructure of trust. In
fact, the very design of TinySec requires as much for rekeying
as well. Though TinySec’s 4-byte initialization vector (IV)
allows for secure transmission of some message as many as 232

times, that bound may be insufficient for embedded networks
whose lifespans demand longer lasting security.2 Needless to
say, TinySec’s reliance on a single secret key prohibits the
mechanism from securely rekeying itself.

Fortunately, these problems of secret keys’ distribution are
redressed by public-key infrastructure. The sections that fol-
low thus explore options for that infrastructure’s design and
implementation on the MICA2.

III. DLP AND THE MICA2

With the utility of SKIPJACK-based TinySec thus motivated
and the mechanism’s costs exposed, we next examine DLP,
on which Diffie-Hellman [16] is based, as an answer to the
MICA2’s problems of secret keys’ distribution. DLP typically
involves recovery of x ∈ Zp, given p, g, and gx (mod p),
where p is a prime integer, and g is a generator of Zp. By
leveraging the presumed difficultly of DLP, Diffie-Hellman
allows two parties to agree, without prior arrangement, upon a
shared secret, even in the midst of eavesdroppers, with perfect
forward secrecy, as depicted in Fig. 2. Authenticated exchanges

2To allow for secure transmission of as many as 232 packets, it is actually
necessary to modify TinySec so that it no longer writes a mote’s address into
the third and fourth bytes of a mote’s IV.
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Fig. 1. Actual throughput versus desired throughput for acknowledged (ACKed) and unacknowledged (unACKed) transmissions between a sender and a receiver,
averaged over ten minutes of transmission per level of desired throughput, where desired throughput is the rate at which calls to SendMsg.send(·,·,·) were
scheduled by Timer.start(·,·). ACKed actual throughput is the rate at which 29-byte, random payloads from a sender were received and subsequently
acknowledged by an otherwise passive recipient. UnACKed actual throughput is the rate at which the sender actually sent such packets, acknowledged or not (i.e.,
the rate at which calls to SendMsg.send(·,·,·) were actually processed). For clarity, where ACKed and unACKed throughput begins to diverge are points
labelled with values for actual throughput. In environments with less contention for medium access than in ours, higher throughput is possible, with and without
TinySec enabled.

TABLE II

ROUND-TRIP TIMES REQUIRED TO TRANSMIT A 29-BYTE, RANDOM

PAYLOAD, WITH AND WITHOUT TINYSEC ENABLED, FROM ONE NODE TO A

NEIGHBOR AND BACK AGAIN, AVERAGED OVER 1,000 TRIALS. MORE

PRECISELY, ROUND-TRIP TIME IS DEFINED HERE AS THE TIME ELAPSED

BETWEEN SENDMSG.SEND(·,·,·) AND RECEIVEMSG.RECEIVE(·). THE

IMPLIED OVERHEAD OF TINYSEC ON ROUND-TRIP TIME IS GIVEN AS THE

DIFFERENCE OF THE DATA’S MEANS. THE ROOT MEAN SQUARE IS DEFINED

AS
q

s2
W/O/1, 000 + s2

W//1, 000, WHERE sW/O AND sW/ ARE THE DATA’S

STANDARD DEVIATIONS.

without TinySec with TinySec
Median 145,059 µsec 149,290 µsec
Mean 147,044 µsec 152,015 µsec
Standard Deviation 30,736 µsec 31,466 µsec
Standard Error 972 µsec 995 µsec

Implied Overhead of TinySec 4,971 µsec
Root Mean Square 1,391 µsec

are possible with the station-to-station protocol (STS) [17], a
variant of Diffie-Hellman.

With a form of Diffie-Hellman, then, could two nodes thus
establish a shared secret for use as TinySec’s key. At issue,
though, is the cost of such establishment on the MICA2.

TABLE III

TIMES REQUIRED TO TO ENCRYPT A 29-BYTE, RANDOM PAYLOAD, AND TO

COMPUTE THAT PAYLOAD’S MAC, AVERAGED OVER 1,000 TRIALS. THE

IMPLIED OVERHEAD OF TINYSEC IS GIVEN AS THE SUM OF THE DATA’S

MEANS. THE ROOT MEAN SQUARE IS DEFINED ASq
s2

W/O/1, 000 + s2
W//1, 000, WHERE sW/O AND sW/ ARE THE DATA’S

STANDARD DEVIATIONS.

encrypt() computeMAC()
Median 2,189 µsec 3,038 µsec
Mean 2,190 µsec 3,049 µsec
Standard Deviation 3 µsec 281 µsec
Standard Error 0 µsec 9 µsec

Implied Overhead of TinySec 5,239 µsec
Root Mean Square 9 µsec

Inasmuch as the goal at hand is distribution of 80-bit
TinySec keys, any mechanism of exchange should provide
at least as much security. According to NIST [18], then, the
MICA2’s implementation of Diffie-Hellman should employ a
modulus, p, of at least 1,024 bits and an exponent (i.e., private
key), x, of at least 160 bits (Table V).

Unfortunately, on an 8-bit architecture, computations with
160-bit and 1,024-bit values are not inexpensive. However,



TABLE IV

MEMORY OVERHEAD OF TINYSEC, DETERMINED THROUGH

INSTRUMENTATION OF CNTTORFM, AN APPLICATION WHICH SIMPLY

BROADCASTS A COUNTER’S VALUES OVER THE MICA2’S RADIO. THE

.BSS AND .DATA SEGMENTS CONSUME SRAM WHILE THE .TEXT

SEGMENT CONSUMES ROM. STACK IS DEFINED HERE AS THE MAXIMUM

OF THE APPLICATION’S STACK SIZE DURING EXECUTION.

without TinySec with TinySec Difference
.bss 384 B 838 454 B
.data 4 B 280 B 276 B
.text 9,220 B 16,296 B 7,076 B
stack 105 B 197 B 92 B

modular exponentiation is not intractable on the MICA2. Fig. 3
offers the results of instrumentation of one implementation
of Diffie-Hellman for the MICA2 [19]: computation of 2x

(mod p), where x is a pseudorandomly generated 160-bit
integer and p is a 768-bit prime requires 31.0 sec on average;
computation of the same, where p is a 1,024-bit prime, requires
54.9 sec. Assuming (generously) that nodes sharing some key
need only be rekeyed every 232 packets (at which time four-byte
IVs are exhausted), this computation and that for yx (mod p),
where y is another node’s public key, seem reasonable costs for
an application’s longevity. Table VI details these operations’
memory usage.

Of course, these measurements assume operation at full duty
cycle, the energy requirements of which may be unacceptable,
as the MICA2’s lifetime decreases to just a few days at maximal
duty cycle. Table VII reveals the MICA2’s energy consumption
for modular exponentiation: computation of 2x (mod p) appears
to require 1.185 J. Roughly speaking, a mote could devote its
lifetime to 51,945 such computations.3

Of course, these numbers might be improved (with, e.g.,
hand-optimization). Unfortunately, these computations require
not only time but also memory. Mere storage of a public key
requires as many bits as is the modulus in use. Accordingly, n

1,024-bit keys would more than exhaust a node’s SRAM for
n as small as 32. Although a node is unlikely to have—or,
at least, need—so many neighbors or certificate authorities for
whom it needs public keys, Diffie-Hellman’s relatively large
key sizes are unfortunate in the MICA2’s resource-constrained
environment. A key of this size would not even fit in a single
TinyOS packet.

3For instance, Energizer No. E91, an AA battery, offers an average capacity
of 2,850 mAh [20]; it follows that no more than 2 × 2,850 mAh × 3600
sec/h ÷ (7.3 mA × 54.1144 sec) ≈ 51,945 modular exponentiations would
be possible with two AA batteries on the MICA2. Of course, this bound is
generous: the MICA2 effectively dies once voltage drops below 2 volts.

Fig. 2. Typical exchange of a shared secret under Diffie-Hellman based on
DLP [21].

TABLE V

STRENGTH OF DIFFIE-HELLMAN BASED ON DLP FOR VARIOUS MODULI

AND EXPONENTS. “AN ALGORITHM THAT HAS A ‘Y ’ BIT KEY, BUT WHOSE

STRENGTH IS EQUIVALENT TO AN ‘X ’ BIT KEY OF SUCH A SYMMETRIC

ALGORITHM IS SAID TO PROVIDE ‘X BITS OF SECURITY’ OR TO PROVIDE

‘X -BITS OF STRENGTH’. AN ALGORITHM THAT PROVIDES X BITS OF

STRENGTH WOULD, ON AVERAGE, TAKE 2X−1T TO ATTACK, WHERE T IS

THE AMOUNT OF TIME THAT IS REQUIRED TO PERFORM ONE ENCRYPTION

OF A PLAINTEXT VALUE AND COMPARISON OF THE RESULT AGAINST THE

CORRESPONDING CIPHERTEXT VALUE.” [18]

Bits of Security Modulus Exponent
80 1,024 160
112 2,048 224
128 3,072 256
192 7,680 384
256 15,360 512

IV. ECDLP AND THE MICA2

With ECC, secure distribution of 80-bit TinySec keys is
possible using public keys with fewer bits than 1,024: 163 bits
are sufficient. Indeed, elliptic curves are believed to offer
security computationally equivalent to that of Diffie-Hellman
based on DLP with remarkably smaller key sizes insofar as
subexponential algorithms exist for DLP [22]–[25], but no such
algorithm is known or thought to exist for ECDLP over certain
fields [26], [27].

Elliptic curves offer an alternative foundation for the ex-
change of shared secrets among eavesdroppers with perfect
forward secrecy, as depicted in Fig. 4. ECDLP, on which
ECC [28], [29] is based, typically involves recovery over some
Galois (i.e., finite) field, F, of k ∈ F, given (at least) k ·G, G,
and E, where G is a point on an elliptic curve, E, a smooth
curve of the long Weierstrass form

y2 + a1xy + a3y ≡ x3 + a2x
2 + a4x + a6, (1)

where ai ∈ F. Of recent interest to cryptographers are such
curves over Fp and F2p , where p is prime, as neither appears
vulnerable to subexponential attack [27]. Though once popular,
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Fig. 3. Time required to compute 2x (mod p), where p is prime, on the
MICA2.

TABLE VI

MEMORY OVERHEAD OF MODULAR EXPONENTIATION, DETERMINED

THROUGH INSTRUMENTATION OF AN IMPLEMENTATION OF

DIFFIE-HELLMAN BASED ON DLP ON THE MICA2 WHICH COMPUTES 2x

(MOD p), WHERE x IS A 512-BIT INTEGER AND p IS PRIME. THE .BSS AND

.DATA SEGMENTS CONSUME SRAM WHILE THE .TEXT SEGMENT

CONSUMES ROM. STACK IS DEFINED HERE AS THE MAXIMUM OF THE

APPLICATION’S STACK SIZE DURING EXECUTION.

768-Bit Modulus 1,024-Bit Modulus
.bss 852 B 980 B
.data 102 B 134 B
.text 11,334 B 11,350 B
stack 136 B 136 B

extension fields of composite degree over F2 are vulnerable
by reduction with Weil descent [30] of ECDLP to DLP over
hyperelliptic curves [27]. But F2p , a binary extension field,
remains popular among implementations of ECC, especially
those in hardware, as it allows for particularly space- and time-
efficient algorithms. In light of its applications in coding, the
field has also received more attention in the literature than those
of other characteristics [31].

It is with this history in mind that we proceeded with our
implementation of ECC over F2p toward an end of smaller
public keys for the MICA2.

A. Elliptic Curves over F2p

It turns out that, over F2p , Equation 1 simplifies to

y2 + xy ≡ x3 + ax2 + b, (2)

where a, b ∈ F2p , upon substitution of a2
1x + a3

a1
for x and

a3
1y + a2

1a4+a2
3

a3
1

for y, if we consider only nonsupersingular
curves, for which a1 6= 0. It is the set of solutions to Equation 2
and, more generally, Equation 1 (i.e., the points on E), that
actually provides the foundation for smaller public keys on the

TABLE VII

ENERGY CONSUMPTION OF MODULAR EXPONENTIATION, DETERMINED

THROUGH INSTRUMENTATION OF AN IMPLEMENTATION OF

DIFFIE-HELLMAN BASED ON DLP ON THE MICA2 WHICH COMPUTES 2x

(MOD p), WHERE x IS A 160-BIT INTEGER AND p IS A 1,024-BIT PRIME.

1,024-Bit Modulus, 160-Bit Exponent
Total Time 54.1144 sec
Total CPU Utilization 3.9897× 108 cycles
Total Energy 1.185 Joules

Fig. 4. Typical exchange of a shared secret under Diffie-Hellman based on
ECDLP.

MICA2. All that remains is specification of some algebraic
structure over that set. An Abelian group suffices but requires
provision of some binary operator offering closure, associa-
tivity, identity, inversion, and commutativity. As suggested by
ECDLP’s definition, that operator is to be addition.

The addition of two points on a curve over F2p is defined
as

(x1, y1) + (x2, y2) = (x3, y3),

such that

(x3, y3) = (λ2 + λ + x1 + x2 + a, λ(x1 + x3) + x3 + y1),

where

λ = (y1 + y2)(x1 + x2)−1.

However, so that the group is Abelian, it is necessary to define
a “point at infinity,” O, whereby

O +O = O,

(x, y) +O = (x, y), and

(x, y) + (x,−y) = O.

Doubling of some point, meanwhile, is defined as

(x1, y1) + (x1, y1) = (x3, y3),

such that

(x3, y3) = (λ2 + λ + a, x2
1 + (λ + 1)x3),
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Fig. 5. Running time for EccM 1.0, a TinyOS module which selected for a node at random, using a polynomial basis over F2p , a curve, a point, and a private
key, thereafter computing the node’s public key. Points are labelled with running times. For larger keys (e.g., 63-bit), the module failed to produce results.

where

λ = x1 + y1x
−1
1 ,

provided x1 6= 0.
With these primitives is point multiplication also possi-

ble [32]. With an algebraic structure on the points of elliptic
curves over F2p thus defined, implementation of a cryptosystem
is possible.

B. ECC over F2p

Implementation of ECC over F2p first requires a choice of
basis for points’ representation, insofar as each a ∈ F2p can be
written as

a =
m−1∑

i=0

aiαi,

where ai ∈ {0, 1}. Thus defined, a can be represented as a
binary vector, {a0, a1, . . . , ap−1}, where {α0, α1, . . . , αp−1}
is its basis over F2. Most common for bases over F2 are
polynomial bases and normal bases, though dual, triangular,
and other bases exist.

When represented with a polynomial basis, each a ∈ F2p

corresponds to a binary polynomial of degree less than p,
whereby

a = ap−1x
p−1 + ap−2x

p−2 + · · ·+ a0x
0,

where, again, ai ∈ {0, 1}. Accordingly, each a ∈ F2p

can be represented in the MICA2’s SRAM as a bit string,
ap−1ap−2 · · · a0. All operations on these elements are per-
formed modulo an irreducible reduction polynomial, f , of
degree p over F2, such that f(x) = xp +

∑p−1
i=0 fixi, where

fi ∈ {0, 1} for i ∈ {0, 1, . . . , p−1}. Typically, if an irreducible
trinomial, xp + xk + 1, exists over F2p , then f(x) is chosen to
be that with smallest k; if no such trinomial exists, then f(x)
is chosen to be a pentanomial, xp + xk3 + xk2 + xk1 + 1, such
that k1 is minimal, k2 is minimal given k1, and k3 is minimal
given k1 and k2 [33].

In a polynomial basis, addition of two elements, a and b

is defined as a + b = c, where ci ≡ ai + bi (mod 2) (i.e., a
sequence of XORs). Multiplication of a and b, meanwhile, is
defined as a · b = c, where c(x) ≡ (

∑p−1
i=0 aix

i)(
∑p−1

i=0 bix
i)

(mod f(x)).
We selected a polynomial basis for our implementations of

point multiplication on the MICA2, as it tends to allow for
more efficient implementations in software [34].

C. First Implementation

Our first implementation of ECC on the MICA2 (EccM 1.0),
a TinyOS module based on code by Michael Rosing [35],
whose Implementing Elliptic Curve Cryptography is a popu-
lar starting point for any implementation of ECC, ultimately
reinforced prevailing wisdom: it was a failure.

EccM 1.0 first selected a random curve in the form of
Equation 2, such that a = 0 and b ∈ F2p . It next selected
a random point, G ∈ F2p × F2p , from that curve as well as a
random k ∈ F2p , the node’s private key. Finally, it computed
k ·G, the node’s public key.

As in Rosing’s code, this implementation employed a num-
ber of optimizations. Addition of points was implemented
in accordance with Schroeppel et al. [36]; multiplication of
points followed Koblitz [37]; conversion of integers to non-
adjacent form was accomplished as in Solinas [38]. Generation
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of pseudorandom numbers, meanwhile, was achieved with
Marsaglia [39].

On first glance, the results (Fig. 5) were encouraging, with
generation of 33-bit keys requiring just 1.776 sec. Unfor-
tunately, for larger keys (e.g., 63-bit), the module failed to
produce results, instead causing the mote to reset as a result
of stack overflow. Although none of the module’s functions
were recursive, several utilized a good deal of memory for
multi-word arithmetic. Fig. 6 offers the results of an analysis
of EccM 1.0’s usage of SRAM.

D. Second Implementation

Since optimizations of EccM 1.0 failed to render generation
of even 63-bit keys possible, an overhaul of this popular im-
plementation proved necessary for realization of 163-bit keys.
Inspired by the design of Dragongate Technologies Limited’s
Java-based jBorZoi 0.9 [40], EccM 2.0 similarly implements
ECC but with far greater success. EccM 2.0 selects for a node,
Alice, a private key, kA, using a polynomial basis over F2p ,
thereafter computing with a Koblitz curve and base point, G,
Alice’s public key, TA. Alice’s public key is then broadcasted
(in two, 22-byte payloads) to any node, Bob, with whom secure
communication is desired. Provided Alice receives Bob’s public
key, TB , from Bob in this same manner, each can compute a
shared secret, kA · kB ·G, where kB is Bob’s private key. If so
desired, this secret could be massaged into compliance with a
standard like the Elliptic Curve Key Agreement Scheme, Diffie-
Hellman 1 (ECKAS-DH1) [41].

In EccM 2.0, multiplication of points is achieved with
Algorithm IV.1 in Blake et al. [42], while addition of points
is achieved with Algorithm 7 in López and Dahab [33].
Multiplication of elements in F2p , meanwhile, is implemented

as Algorithm 4 in López and Dahab [43], while inversion is
implemented as Algorithm 8 in Hankerson et al. [44].

Beyond rendering 163-bit public keys feasible, EccM 2.0
also redresses another shortcoming in EccM 1.0. Inasmuch as
EccM 1.0 selects curves at random, it risks (albeit with expo-
nentially small probability) selection of supersingular curves
which are vulnerable to sub-exponential attack via MOV
reduction [45] with index-calculus methods [46]. EccM 2.0
thus obeys NIST’s recommendation for ECC over F2p [47],
selecting, for the results herein,

f(x) = x163 + x7 + x6 + x3 + 1

for the reduction polynomial,

y2 + xy ≡ x3 + x2 + 1

for the curve, E, the order of (i.e., number of points on) which
is 0x4000000000000000000020108a2e0cc0d99f8a5ef, and, for
the point G = (Gx, Gy),

Gx = 0x2fe13c0537bbc11acaa07d793de4e6d5e5c94eee8

and

Gy = 0x289070fb05d38ff58321f2e800536d538ccdaa3d9.

Ultimately, not only does EccM 2.0 employ much less memory
than does EccM 1.0 (Table VIII), its running time bests that for
Diffie-Hellman based on DLP, using keys an order of magnitude
smaller in size but no less secure. The time required to generate
a private and public key pair with this module, averaged over
100 trials, is just 34.161 sec, with a standard deviation of
0.921 sec. The time required to generate a shared secret, given
one’s private key and another’s public key, averaged over 100
trials, is 34.173 sec, with a standard deviation of 0.934 sec.
In short, distribution of some shared secret involves just over
one minute of computation per node in total. Table IX details
the module’s energy consumption. Although such performance
might prove unacceptable for some applications of PKI, it
appears quite reasonable for infrequent distribution of TinySec
keys.

A link to EccM 2.0’s source code is offered in the Appendix.

V. DISCUSSION

EccM 2.0’s average running time of, roughly, 34 seconds
for point multiplication is the result of several iterations of op-
timization. In fact, this module initially clocked 7.782 minutes
for this computation, well beyond any reasonable bound. To
be sure, we spent some cycles foolishly (e.g., unnecessarily
recomputing the terminal condition for some loop). But other
waste was less obvious. Apparent only to us (and not to NesC’s
compiler), certain loops were simply better off iterating from
high to low than from low to high, given the expected lengths



TABLE VIII

MEMORY USAGE OF ECCM 1.0 VERSUS ECCM 2.0. WITH ECCM 2.0, WE

OBTAIN SIGNIFICANTLY MORE BITS OF SECURITY USING A REASONABLE

FOOTPRINT IN MEMORY. THE .BSS AND .DATA SEGMENTS CONSUME

SRAM WHILE THE .TEXT SEGMENT CONSUMES ROM. STACK IS DEFINED

HERE AS THE MAXIMUM OF THE APPLICATION’S STACK SIZE DURING

EXECUTION. MUCH OF THE INCREASE OF ROM’S CONSUMPTION IS THE

RESULT OF ECCM 2.0’S ADDITIONAL FUNCTIONALITY.

EccM 1.0 EccM 2.0
(32-bit key) (163-bit key)

.bss 826 B 1,055 B

.data 6 B 4 B

.text 17,544 B 34,342 B
stack 976 B 81 B

TABLE IX

ENERGY CONSUMPTION OF ECCM 2.0, A TINYOS MODULE WHICH

ALLOWS TWO NODES TO GENERATE PUBLIC AND PRIVATE KEYS (AND,

THEREAFTER, TO USE THE SAME TO EXCHANGE A SHARED SECRET),

DURING GENERATION OF A NODE’S PUBLIC AND PRIVATE KEYS.

Private-Key Generation Public-Key Generation
Total Time 0.229 sec 34.161 sec
Total CPU Utilization 1.690× 106 cycles 2.512× 108 cycles
Total Energy 0.00549 Joules 0.816 Joules

of various multi-precision intermediates. Other loops proved
better off once manually unrolled.

Rather than handle multi-precision bit shifts with a gen-
eralized implementation, we were able to shave seconds off
the running time by special-casing the most common of shifts
(namely left shifts by one bit and by two bits), albeit at a cost
of a larger .bss segment.

Consider that, with inlining disabled, even the current ver-
sion of this module induces hundreds of thousands of function
calls, largely the result of the module’s requirement of multi-
precision arithmetic. Even the slightest of improvements in
some function’s performance, then, can effect significant gains
overall.

Of course, some optimizations were grounded in published,
theoretical results. Substitution of Algorithm 2 in Hanker-
son et al. [44] with Algorithm 4 in López and Dahab [43]
offered several seconds of improvement, as did implementation
of Algorithm 7 in López and Dahab [33]. But the art of source-
level, hand optimizations, so infrequently deployed for modern
systems, proved remarkably helpful, daresay necessary, for an
environment so constrained as the MICA2.

VI. FUTURE WORK

While ECC’s performance on the MICA2 is gratifying,
opportunities for future work remain. Further reduction of
the module’s running time, through source- or assembly-level
enhancements, is, of course, of interest. Worthy of considera-
tion for future versions of this module is a normal basis, an
advantage of which would be its implementation using only
ANDs, XORs, and cyclic shifts, beneficiaries of which are
multiplication and squaring. (For this reason, normal bases tend
to be popular in implementations of ECC in hardware.) Of
value as well might be a hybrid of polynomial and normal
bases, as such is thought to leverage advantages of each
simultaneously [35].

Of course, recent work by Gura et al. [11] suggests that the
module might offer even better performance if re-implemented
over Fp, especially as expensive inversions could be avoided
through use of projective (as opposed to affine) coordinates
[48]. Although relatively efficient algorithms exist for modular
reduction (e.g., those of Montogomery [49] or Barrett [50]),
selection of a generalized Mersene number for p would also
allow modular reduction to be executed as a more efficient
sequence of three additions (mod p) [51].

Performance aside, EccM 2.0’s reliance on TinyOS’s Ran-
domLFSR module is troubling cryptographically, as this
pseudo-random number generator (PRNG) relies solely upon
a mote’s unique ID for seeding, rather than upon any physical
source of randomness. Implementation of a superior PRNG is
necessary for our module’s security. Truly random bits might be
captured from such sources as local sensor readings, interrupt
and packet-arrival times, and other physical sources.

VII. RELATED WORK

Studied by mathematicians for more than a century, elliptic
curves claim significant coverage in the literature. ECC, mean-
while, has received much attention since its discovery in 1985.

Of particular relevance to this work is Woodbury’s recom-
mendation of an optimal extension field, F(28−17)17 , for low-
end, 8-bit processors [52]. Jung et al. propose supplemen-
tary hardware for AVR implementing operations over binary
fields [53]. Handschuh and Paillier propose cryptographic co-
processors for smart cards [54], whereas Woodbury et al. de-
scribe ECC for smart cards without coprocessors [55]. Albeit
for a different target, Hasegawa et al. provide a “small and
fast” implementation of ECC in software over Fp for a 16-
bit microcomputer [56]. Messerges et al. call for ECC with
163-bit keys for mobile, ad hoc networks [57]. Guajardo
et al. describe an implementation of ECC for the 16-bit TI
MSP430x33x family of microcontrollers [58]. Weimerskirch
et al., meanwhile, offer an implementation of ECC for Palm
OS [59], and Brown et al. offer the same for Research In
Motion’s RIM pager [60].



ZigBee, on the other hand, shares this work’s aim of wireless
security for sensor networks albeit not with ECC but with AES-
128 [61], a shared-key protocol. Meanwhile, recommendations
for ECC’s parameters abound, among academics [62], among
corporations [63], and within government [41], [47].

A number of implementations of ECC in software are
freely available, though none are particularly well-suited for
the MICA2, in no small part because of their memory require-
ments. Rosing [35] offers his C-based implementation of ECC
over F2p with both polynomial and normal bases. ECC-LIB
[64] and pegwit [65] offer their own C-based implementations
over F2p with polynomial bases. MIRACL [66] provides the
same, with an additional option for curves over Fp. LibTom-
Crypt [67], also in C, focuses on Fp. Dragongate Technologies
Limited, meanwhile, offers borZoi and jBorZoi [40], imple-
mentations of ECC over F2p with polynomial bases in C++ and
Java, respectively. Another implementation in C++, also using
a polynomial basis over F2p , is available through libecc [68].

VIII. CONCLUSION

Despite claims to the contrary, public-key infrastructure ap-
pears viable on the MICA2, certainly for infrequent distribution
of shared secrets. Although our implementation of ECC in
4 KB of primary memory on this 8-bit, 7.3828-MHz device
offers room for further optimization, even a minute’s worth of
computation every 232 transmissions (or every day or every
week) seems reasonable for re-keying.

The need for PKI’s success on the MICA2 seems clear.
TinySec’s shared secrets do allow for efficient, secure com-
munications among nodes. But such devices as those in sensor
networks, for which physical security is unlikely, require some
mechanism for secret keys’ distribution.

In that it offers equivalent security at lower cost to memory
and bandwidth than does Diffie-Hellman based on DLP, a
public-key infrastructure for key distribution based on elliptic
curves is an apt, and viable, choice for TinyOS on the MICA2.
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APPENDIX

EccM 2.0’s source code is available for download from
http://www.eecs.harvard.edu/∼malan/.
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