From Cluster to Cloud to Appliance

David J. Malan
School of Engineering and Applied Sciences
Harvard University
Cambridge, Massachusetts, USA

malan@harvard.edu

ABSTRACT

We propose a client-side virtual machine (VM) as an alter
native to on-campus clusters and off-campus clouds as a de
velopment environment for students in introductory courses.
In Fall 2011, we deployed the CS50 Appliance, our own such
VM, to 600 students on campus and, in Fall 2012, to 700 stu
dents on campus and 140,000 students online. We present in
this work the results of that two-year experiment. The ap
pliance itself is available as open source for others to adapt
or adopt.

Not only did the appliance enable us to provide students
with simpler tools, among them a graphical editor without
any latency, it also enabled us to provide more sophisti
cated tools too, including a web server and database server.
Moreover, the appliance ensured that the course’s workload
no longer required constant Internet access, particularly of
students abroad. And the appliance alleviated load on the
course’s servers, with execution of students’ programs now
distributed across students’ own CPUs. Without the appli
ance (or more costly clusters or clouds), we certainly could
not have accommodated as many as 140,000 students.

But some students’ laptops, particularly netbooks, strug
gled under the appliance’s weight. Even though designed
to be lean, the appliance, like any VM, still consumes re
sources, particularly RAM. And unforeseen technical diffi
culties arose in both years, most, but not all, of which we
redressed with mid-semester updates and documentation.

Ovwerall we have judged our deployment of an appliance a
success, superior to past years’ clusters and clouds. And we
continue to refine the appliance for Fall 2013.

Categories and Subject Descriptors
D.2.6 [SOFTWARE ENGINEERING]: Programming En

vironments; K.3.1 [COMPUTERS AND EDUCATION]:

Computer Uses in Education — Distance learning;

K.3.2 [COMPUTERS AND EDUCATION]: Computer
and Information Science Education— Computer science ed
ucation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ITiCSE’13, July 1-3, 2013, Canterbury, England, UK.

Copyright 2013 ACM 978-1-4503-2078-8/13/07 ...$15.00.

General Terms

Design, Experimentation, Standardization

Keywords

virtual machine, virtualization

1. INTRODUCTION

Computer Science 50 (CS50) is Harvard University’s “in
troduction to the intellectual enterprises of computer science
and the art of programming” for majors and non-majors
alike, a one-semester amalgam of courses generally known
as CS1 and CS2. The course is required of majors, but
most of the course’s students are non-majors. In Fall 2012,
enrollment was 715, 73% of whom had no prior CS experi
ence, 20% of whom had taken one prior course, and 7% of
whom had taken two or more. The course is taught mostly
in C in a command-line environment, with PHP and SQL
introduced toward term’s end in the context of web program
ming. Weekly problem sets (i.e., programming assignments)
demand upwards of 15 hours per week of most students.

Some years ago, students wrote most of their code on a
load-balanced cluster of Linux servers to which they could
connect via SSH in order to use gec and gdb to compile and
debug. In Fall 2009, we moved the course into the “cloud” [2],
whereby we recreated that cluster using virtual machines
(VMs) within Amazon’s Elastic Compute Cloud [1]. Our
goals were both technical and pedagogical. As computer
scientists, we wanted more control over our students’ envi
ronment than the university’s shared infrastructure would
allow (e.g., root access), so that we ourselves could install
software at will and respond to students’ needs at any hour
without an [T department between us and our systems. As
teachers, we wanted easier access to our students’ work (as
via su) as well as the ability to grow and shrink our infras
tructure as problem sets’ computational requirements de
manded. And we also wanted to integrate into the course’s
own syllabus discussion of cloud computing and, with it,
scalability, virtualization, and multi-core processing.

On the whole, our new home in the cloud proved a success,
as we achieved precisely the autonomy and conveniences we
had sought. Moreover, we no longer had to worry about
power or cooling or hardware more generally.

But the experiment was not without downsides as well.
Serving as our own system administrators cost us time, as
did some (self-induced) technical difficulties with software
that, in years past, would have been tackled by the uni
versity itself. The cloud-based cluster also suffered from



latency, whereby X applications (e.g., emacs) no longer per
formed as well. And even though the course’s staff now
had root access, students still did not. The cloud (like the
on-campus cluster) thus limited students to only those ac
tions that could be performed in user space, even though
the course’s final project encouraged students to explore lan
guages and tools beyond those covered in class (and installed
by us in the cloud).

We thus decided in Fall 2011 to transition from server
side VMs to client-side VMs, whereby students would ef
fectively run their own copy of the course’s environment on
their own laptop or desktop by installing the CS50 Appli
ance, a VM preconfigured by us for precisely that purpose.
With so many students (particularly without prior back
ground), we preferred that the course still provide students
with a standard environment, rather than expect them to
install and configure an assortment of tools. (In another in
troductory course had that approach yielded far too many
technical difficulties.) We hypothesized that students’ own
CPUs were finally adequate to support client-side virtual
ization, which tends to be resource-intensive. And we were
eager to introduce graphical tools (without latency) beyond
those available at a command line, among them the simplest
of text editors, gedit. Having used emacs, nano, and vim
in years past (and having experimented with heavier-weight
IDEs like Code::Blocks, Eclipse, and NetBeans), we saw in
gedit, with its embedded terminal window and syntax high
lighting, precisely the balance of simplicity and code-friendly
features that we had long wanted in the course’s first weeks.
We did not want tools and arcane keystrokes to get in the
way of actual lessons. At the same time, we wanted stu
dents exposed to more sophisticated tools and techniques by
term’s end. In that this appliance would also allow students
to administer their own web server (Apache) and database
server (MySQL), and anything else via sudo, it offered pre
cisely the “low floor” and “high ceiling” [10] that could ac
commodate students less comfortable and more comfortable
alike.

Moreover, as it turned out, this same appliance would ul
timately enable us in Fall 2012 to open the course to thou
sands of students online via edX [4], without needing to
scale an on-campus cluster or off-campus cloud. Indeed,
since 2011, we have deployed the CS50 Appliance to more
than 1,300 students on campus and 140,000 students on
line. The appliance itself is available as open source at
http://cs.harvard.edu/malan for other courses to adapt
or adopt.

In the section that follows, we present the CS50 Appli
ance, its implementation details, and its pedagogical design.
In Section 3, we present related work. In Section 4, we
present the results of our two-year experiment with client
side virtualization of the course’s environment. In Section 5,
we propose future work. And in Section 6, we conclude.

2. DESIGN

The CS50 Appliance is a VM that enables students to
run Linux within a window on their own computer, whether
their computer runs Windows, Mac OS, or Linux itself. The
appliance happens to run Fedora (32-bit, for compatibility’s
sake), a rather bleeding-edge variant of the Red Hat-based
operating systems that we once used in our cluster and cloud
that enables students to experiment for final projects with

the latest packages of software. But the appliance could
certainly be implemented with most any flavor of Linux.

The appliance is implemented by way of two files: one text
and one binary. The former describes, in a machine-readable
format, the appliance’s virtual hardware (e.g., its network
adapters). The latter contains the appliance’s virtual disk,
a serialized copy of what otherwise would be an actual hard
drive.

In order to run the CS50 Appliance, a student (or teacher)
need only download a ZIP of those files and install a hypervi
sor (otherwise known as a virtual machine monitor), the lat
ter of which reconstitutes a virtual machine out of those files,
thereby enabling the student to boot the disk image within
a window. In Fall 2011, we recommended that students
use VirtualBox [8], a free hypervisor from Oracle for Win
dows, Mac OS, and Linux alike. Frustrated by some bugs
we encountered, though, we instead recommended VMware
Player (for Windows and Linux) [15] and VMware Fusion
(for Mac OS) [14] in Fall 2012. Both proved more stable,
but whereas the former is free, the latter required of the
course a paid subscription to a VMware Academic Program
(so that students themselves would not have to pay) [13].

The appliance’s disk image, meanwhile, is the product of
two files: applianceb0.ks, a “kickstart” file that instructs
Fedora’s installer (Anaconda) how to begin the appliance’s
configuration, and appliance50.rpm, an “RPM” (otherwise
known as a “package”) that instructs the installer how to
complete the appliance’s configuration. The RPM, too, en
sures via updates that the appliance remains up-to-date
throughout the semester.

Not only does the appliance, once booted, provide a com
mand line (and, with it, tools like gce, gdb, make, and the
like), it also provides Xfce, a lightweight desktop environ
ment (that doesn’t require much RAM) reminiscent of Win
dows and Mac OS, per Figure 1. But the appliance behaves
as not only a desktop client but also a server. In particular,
the appliance includes software like Apache and MySQL that
students utilize for problem sets and final projects toward
the term’s end. As such, the appliance resembles by design
an actual web host. Although not used in the course, the
appliance also includes g++, java, perl, python, ruby, and
more. Installing additional software requires but a single
command (yum).

For international students and keyboards, the appliance
includes support for multiple languages and layouts. And
it also includes TeamViewer [11], free software that enables
the course’s staff to see and control students’ appliances re
motely as needed to help troublesheet (if students consent).

The appliance includes course-specific software as well,
including check50 (which enables students to check their
programs’ correctness) [3], style50 (which reformats code),
and submit50 (via which students submit work).

Although the CS50 Appliance has its origins in CS50, it
is designed to be used in downstream courses well, includ
ing our courses on functional programming, systems pro
gramming, software engineering, and operating systems. In
deed, students can now reconfigure the appliance for other
courses with single commands (e.g., for CS51, it suffices to
run yum install csb51).

Documentation for the appliance’s creation, installation,
and usage is available at http://cs.harvard.edu/malan.




'“Yals

LAY

| ¥ | &> &> ¢

CSS50 Appliance "

65 2 4 =

File Edit View
<% Source Code X

Canebane
@ Functions

® main

i
{

oL WN =

< Run Program...
9 €S50 Manual >
£ Dropbox

& TeamViewer

&5 Administration
"%| Settings

>

>

2% Accessories >
3% Graphics >
>

>

>

(s) Internet

o

Programming
i) sound & Video

[7] Log out
£ Menu [ @ B |7 hello.c (~/Dropbox) - gedit

Search Documents Help

hello.c

#include <stdio.h=

nt main(void)

[ Terminal

hello.c X

C v Tab width: 4 » Ln 6, Col 3

i

Figure 1: This is the CS50 Appliance, a Fedora-based virtual machine preconfigured for students’ use in
CS50 (and downstream courses). Depicted here is an open gedit window atop the appliance’s desktop, with

the appliance’s menu opened.

3. RELATED WORK

Although courses besides ours have undoubtedly provided
their students with preconfigured virtual machines, we have
not found any alternatives quite so tailored for use by less
comfortable students in introductory courses. Indeed, most
appliances tend to be configured (headlessly no less) with
more narrowly defined use cases in mind. We ourselves
drew inspiration initially from TurnKey Linux [12], which
offers dozens of single-purpose virtual machines for multi
ple hypervisors. VMware itself offers a “marketplace” of the
same. And Amazon similarly offers “Amazon Machine Im
ages” (AMlIs), albeit for use in their cloud.

Literature on client-side appliances’ use in courses is sparse,
but appliances can nonetheless be found in systems courses.
Laadan et al. [6] have proposed teaching operating systems
using virtual machines, thereby obviating the need for teach

ing labs. Nieh and Vaill [7], meanwhile, have echoed the

same. Griffin and Jourdan [5] have proposed a range of ed
ucational use cases for VMs as well.

4. RESULTS

In Fall 2011, we deployed the CS50 Appliance to 607 stu
dents on campus, all of whom owned their own laptop or
desktop. (Though we also had the appliance installed in
computer labs on campus.) All students used the appli
ance for 8 problem sets (both C- and web-based), and many
students used the appliance for final projects (mostly web
based). Owverall, the experiment proved a success. Problem
sets no longer required Internet access (as they did with the
cluster and cloud). Students could more easily use graphical
editors like gedit. And server load (particularly on nights



70%

60%

50%

40%

30%

20%

10%

0%

W 2011 2012

B

fast fine

slow slow
(but computer fast) (but computer slow)

Figure 2: On-campus students’ assessments of the CS50 Appliance’s performance in Fall 2011 and Fall 2012,
Whereas most students described the appliance’s performance as “fine” or “fast,” a non-trivial percentage of

students (just under 20%) felt the appliance was “slow.’

their own computer was also slow.

before deadlines) was no longer an issue, since programs were
executed on students’ own CPUs.

But the experiment was not without hiccups. Technical
difficulties could no longer be resolved server-side for stu-
dents by staff (though screen-sharing with TeamViewer did
help). And some laptops, particularly netbooks, struggled
under the weight of a VM. Indeed, per Figure 2, even though
most students described (on surveys toward term’s end) the
appliance’s performance on their own computer as “fast” or
“fine,” just under 20% found the appliance to be “slow,”
though some students disclaimed that their own computer
was slow. Insufficient RAM was often the culprit: nearly
20% of students had computers with only 2GB of RAM, and
nearly 3% of students had even less RAM. Older hardware,
too, was sometimes to blame. (Though enabling “hardware
virtualization” in some computers’ BIOSes did sometimes
help.) Just over 6% of students had computers that were at
least 4 years old.

We encountered unforeseen technical difficulties as well,
particularly at term’s start. This paper’s author made sev-
eral mistakes in the appliance’s configuration, though mid-
semester updates (via yum) allowed us to fix. Some bugs
in Fedora itself also caused us some angst, but we knew we
might pay that price by choosing an operating system with
a rapid release cycle. Less expected were bugs in Virtual-
Box, our recommended hypervisor. Corruption of students’
virtual disks was surprisingly frequent. We ultimately iden-
tified as a trigger students’ tendency to close laptops’ lids
with the appliance still running. (VMware Player and Fu-
sion tolerate such reasonable behavior much better.)

* In some cases, though, students disclaimed that

By Fall 2011’s end, though, we had redressed most of these
problems, either through technological fixes or documenta-
tion. We were thus comfortable deploying the appliance
again in Fall 2012, this time to 715 students on campus and
over 140,000 online, albeit with some modifications. We
configured the appliance to use Dropbox (free file-sharing
software, up to 2GB) to store students’ work (if students
consented) so that each student’s appliance would be effec-
tively disposable. Even if a student’s appliance failed in the
midst of some problem set, the student could simply recon-
stitute another, resync their files, and resume their work
within minutes. (The appliance also uses rsnapshot inter-
nally to back up students’ files locally every few minutes.)
We also began to recommend VMware Player and Fusion
over VirtualBox, in light of the latter’s tendency to corrupt
virtual disks, despite our misgivings with Fusion’s cost. (For
edX, we arranged for free 6-month licenses for all students.)

To be fair, even Fall 2012’s deployment not without down-
sides. Per Figure 2, a non-trivial percentage of students
on campus (again just under 20%) still felt the appliance
was slow. For those students, SSH connections from (less
resource-intensive) terminal windows to yesteryear’s cluster
and cloud would have felt more responsive. As expected,
some off-cycle updates to Fedora itself did trigger some un-
foreseen headaches. And, among our thousands of students
online, we probably witnessed every possible technical dif-
ficulty. But the course’s documentation and forums often
helped in those cases.



5. FUTURE WORK

Even so, the CS50 Appliance is a perpetual work in progress,

particularly as a new version of Fedora is released each year.
To be sure, we could certainly settle on one version of Fe
dora for multiple years, but we prefer to provide students
with the latest versions of software.

On our short-term horizon is to integrate Puppet [9], open
source software for configuring systems, which should help
us ensure that mid-semester updates to Fedora itself don’t
conflict with our own customizations. We may also create
a 64-bit version of the appliance so that its architecture is
identical to some servers that the course still maintains on
campus and off.

For students for whom the appliance’s performance re
mains an issue, we intend to create an AMI within Amazon’s
Elastic Compute Cloud so that those students can boot an
appliance in the cloud, otherwise identical to one running
locally, to whose desktop they can connect via a local thin
client (as via FreeNX or VNC).

And yet, longer term, for some problem sets, we aspire
to replace the appliance altogether with a web-based code
editor and debugger that we have begun to develop [3].

6. CONCLUSION

Despite suboptimal performance on some students’ lap
tops, the CS50 Appliance has thus far proved a success
overall, a welcome replacement for prior years’ clusters and
clouds. Not only has the CS50 Appliance enabled us to
provide students with precisely the environment we have
wanted, it has proved useful beyond the course’s own term.
On campus, the appliance is now used in several downstream
courses as well, and some students even use it for projects
of their own. It is, after all, designed to be a development
environment, tailored for classroom use but no less versatile
for it. And we expect that Moore’s Law will help us redress
those lingering issues of performance, particularly as seniors
with old laptops graduate and freshmen with new laptops
enroll.

In the meantime, we intend to redress what issues remain,
even as we look ahead toward some future term in which a
web-based environment might replace the appliance for some
problem sets. Particularly in the course’s first weeks, when
so much is new to so many students, we would prefer to avoid
altogether potential client-side difficulties that might other
wise distract from those weeks’ lessons. But, inasmuch as
the appliance encapsulates a more real-world environment,
albeit prepackaged, we would still introduce the appliance
some weeks into the course, at which point students would
have all the more background and comfort to troubleshoot
client-side difficulties that might still arise.

7. ACKNOWLEDGMENTS

Many thanks to Glenn Holloway of Harvard for his assis
tance with this work and to our friends at VMware for their
support of this work.

8. REFERENCES

[1] Amazon Web Services. Amazon Elastic Compute
Cloud. http://aws.amazon.com/ec2/.

[2] David J. Malan. Moving CS50 into the Cloud. In 15th
Annual Conference of the Northeast Region of the
Consortium for Computing Sciences in Colleges,
Hartford, Connecticut, April 2010.

[3] David J. Malan. CS50 Sandbox: Secure Execution of
Untrusted Code. In J4th Technical Symposium on
Computer Science Education, Denver, Colorado,
March 2013.

[4] edX. https://www.edx.org/.

T. F. Griffin, III and Z. Jourdan. Educational Use

Cases for Virtual Machines. In Proceedings of the 50th

Annual Southeast Regional Conference, ACM-SE 12,

pages 365366, New York, NY, USA, 2012. ACM.

[(i] O. Laadan, J. Nieh, and N. Viennot. Teaching
Operating Systems Using Virtual Appliances and
Distributed Version Control. In Proceedings of the 41st
ACM Technical Symposium on Compuler Science
Education, SIGCSE 10, pages 480 484, New York,
NY, USA, 2010. ACM.

[7] J. Nieh and C. Vaill. Experiences Teaching Operating
Systems Using Virtual Platforms and Linux. SIGOPS
Oper. Syst. Rev., 40(2):100-104, Apr. 2006.

[8] Oracle. VirtualBox. https://www.virtualbox.org/.

[9] Puppet Labs. Puppet.
http://info.puppetlabs.com/download-puppet-open
source.

()

[10] Seymour Papert. Mindstorms: Children, Computers,
and Powerful Ideas. Basic Books, 1980.

[11] TeamViewer GmbH. TeamViewer.
http://www.teamviewer.com/.

[12] TurnKey Linux. Virtual Appliances.
http://www.turnkeylinux.org/.

[13] VMware, Inc. VMware Academic Program.
http://www.vmware.com/partners/academic/ .

[14] VMware, Inc. VMware Fusion.
http://www.vmware.com/products/fusion/.

[15] VMware, Inc. VMware Player.
http://www.vimware.com/products/player/.



